Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Arthritis Rheumatol ; 75(6): 1039-1047, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36575650

RESUMO

OBJECTIVE: Gout flares that occur during urate-lowering therapy (ULT) are typically related to the shrinkage of tophi due to aggregated neutrophil extracellular traps (NETs) that have captured monosodium urate crystals in the tissues. The present study was undertaken to analyze the blocking effect of α1 -antitrypsin on neutrophil elastase, and it was found that α1 -antitrypsin induced rapid inflammation in the presence of unstable tophi. METHODS: Cell-free DNA levels in serum samples were compared between patients who experienced a varying number of gout flares. We investigated whether cell-free DNA in serum samples and α1 -antitrypsin could be altered after the initiation of ULT. In mice, an injection of monosodium urate monohydrate (MSU) crystals was used to form a mimic of tophi in the peritoneal cavity, which was then analyzed using immunofluorescence staining. Finally, we investigated the relapse of inflammation by analyzing the levels of α1 -antitrypsin in 2 kinds of artificial tophi and in tophus-bearing mice. RESULTS: Levels of cell-free DNA in serum samples correlated with the number of flares experienced by patients with tophaceous gout. ULT induced an increase in cell-free DNA in the serum of patients with tophi. Increases in levels of α1 -antitrypsin were seen in patients with tophi who received ULT. Chalk-like tophi removed from the peritoneal cavity of mice after MSU crystals induced inflammation showed abundant coexpression of interleukin-1ß (IL-1ß) and IL-6-associated NETs. A relapse in inflammation was induced by α1 -antitrypsin during the spontaneous resolution of MSU crystal-induced peritonitis. We observed that α1 -antitrypsin blocks cytokine degradation by neutrophil elastase during the resolution phase of tophi. CONCLUSION: ULT causes shrinkage of the tophi reflected by an increase in the levels of cell-free DNA in serum. In the resolution phase of tophi in mice, NET-associated neutrophil elastase degrades proinflammatory cytokines and, thus, ameliorates inflammation.


Assuntos
Armadilhas Extracelulares , Gota , Animais , Camundongos , Armadilhas Extracelulares/metabolismo , Elastase de Leucócito , Gota/metabolismo , Ácido Úrico/química , Doença Crônica , Inflamação
3.
Front Immunol ; 13: 955806, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874765

RESUMO

Gout is a common type of inflammatory arthritis characterized by the presence of monosodium urate crystals (MSU) in the joints. Macrophages are believed to be involved in gout flares. It has long been recognized that resident macrophage and monocyte derived macrophages are distinct subsets and there have been attempts to investigate their roles in acute gout, respectively. Previous studies revealed that resident macrophages initiate and drive the inflammation, while monocyte derived macrophages differentiated into M1-like macrophages in response to MSU crystals. With the advancement of technologies, subpopulations of synovial resident macrophages have been defined with the characteristics more accurately described. Resident macrophages in the synovial lining layer showed an anti-inflammatory effect in rheumatoid arthritis, but specific Trpv4 depletion of them reduced MSU crystals induced murine arthritis. CD14+ monocytes in the synovial fluid from patients with gout exhibit phenotypes of anti-inflammatory as well as pro-inflammatory characteristics. Here, we review the main aspects of macrophages in the initiation and resolution of acute gout and try to clarify the specific role of each subpopulation. Building a reliable diagram of the effect of monocytes and macrophages during MSU crystals induced arthritis will bring us closer to targeting macrophages for improving the management of gout.


Assuntos
Artrite Gotosa , Gota , Animais , Anti-Inflamatórios/farmacologia , Gota/genética , Macrófagos , Camundongos , Canais de Cátion TRPV , Ácido Úrico/farmacologia
4.
Cell Death Dis ; 13(7): 608, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35835748

RESUMO

Abnormal activation of synovial fibroblasts (SFs) plays an important role in rheumatoid arthritis (RA), the mechanism of which remains unknown. The purpose of our study is to comprehensively and systematically explore the mechanism for Semaphorin 5A-mediated abnormal SF activation in RA. Here, we found that Semaphorin 5A levels were significantly higher in synovial fluid and synovial tissue from RA patients compared with osteoarthritis patients. We further found that the mRNA level and protein abundance of Plexin-A1 was elevated in RA SFs compared with OA SFs, while Plexin-B3 expression showed no significant difference. The increased Semaphorin 5A in RA synovial fluid was mainly derived from CD68+ synovial macrophages, and the elevation led to increased binding between Semaphorin 5A and its receptors, thereby promoting cytokine secretion, proliferation, and migration, and decreasing apoptosis. Moreover, the effect of Semaphorin 5A on enhancing activation (cytokine secretion, cell proliferation and migration) and reducing apoptosis of SFs was significantly abolished after knockdown of Plexin-A1 and Plexin-B3 by small interfering RNA. Transcriptome sequencing and protein array detection revealed that Semaphorin 5A activated the PI3K/AKT/mTOR signaling pathway and inhibited ferroptosis. Morphologically, transmission electron microscopy results showed that Semaphorin 5A could significantly eliminate the mitochondrial diminution, membrane density increased and crest ruptured of SFs induced by ferroptosis inducer RSL3. Mechanistically, Semaphorin 5A enhanced GPX4 expression and SREBP1/SCD-1 signaling by activating the PI3K/AKT/mTOR signaling pathway, thus suppressing ferroptosis of RA SFs. In conclusion, our study provided the first evidence that elevated Semaphorin 5A in RA synovial fluid promotes SF activation by suppressing ferroptosis through the PI3K/AKT/mTOR signaling pathway.


Assuntos
Artrite Reumatoide , Ferroptose , Osteoartrite , Semaforinas , Artrite Reumatoide/metabolismo , Citocinas/metabolismo , Fibroblastos/metabolismo , Humanos , Osteoartrite/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Semaforinas/genética , Semaforinas/metabolismo , Transdução de Sinais , Membrana Sinovial/metabolismo , Serina-Treonina Quinases TOR/metabolismo
5.
BMJ Nutr Prev Health ; 4(1): 4-17, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34308107

RESUMO

Beego is a traditional Chinese complete water-only fasting practice initially developed for spiritual purposes, later extending to physical fitness purposes. Beego notably includes a psychological induction component that includes meditation and abdominal breathing, light body exercise and ends with a specific gradual refeeding program before returning to a normal diet. Beego has regained its popularity in recent decades in China as a strategy for helping people in subhealthy conditions or with metabolic syndrome, but we are unaware of any studies examining the biological effects of this practice. To address this, we here performed a longitudinal study of beego comprising fasting (7 and 14 day cohorts) and a 7-day programmed refeeding phase. In addition to detecting improvements in cardiovascular physiology and selective reduction of blood pressure in hypertensive subjects, we observed that beego decreased blood triacylglycerol (TG) selectively in TG-high subjects and increased cholesterol in all subjects during fasting; however, the cholesterol levels were normalised after completion of the refeeding program. Strikingly, beego reduced platelet formation, activation, aggregation and degranulation, resulting in an alleviated thrombosis risk, yet maintained haemostasis by sustaining levels of coagulation factors and other haemostatic proteins. Mechanistically, we speculate that downregulation of G6B and MYL9 may influence the observed beego-mediated reduction in platelets. Fundamentally, our study supports that supervised beego reduces thrombosis risk without compromising haemostasis capacity. Moreover, our results support that beego under medical supervision can be implemented as non-invasive intervention for reducing thrombosis risk, and suggest several lines of intriguing inquiry for future studies about this fasting practice (http://www.chictr.org.cn/index.aspx, number, ChiCTR1900027451).

6.
Aging (Albany NY) ; 12(24): 25673-25683, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33232280

RESUMO

Atg7, a critical component of autophagy machinery, is essential for counteracting hematopoietic aging. However, the non-autophagic role of Atg7 on hematopoietic cells remains fundamentally unclear. In this study, we found that loss of Atg7, but not Atg5, another autophagy-essential gene, in the hematopoietic system reduces CD11b myeloid cellularity including CD11b+Ly6G+ and CD11b+Ly6G- populations in mouse bone marrow. Surprisingly, Atg7 deletion causes abnormally accumulated histone H3.1 to be overwhelmingly trapped in the cytoplasm in the CD11b+Ly6G-, but not the CD11b+Ly6G+ compartment. RNA profiling revealed extensively chaotic expression of the genes required in nucleosome assembly. Functional assays further indicated upregulated aging markers in the CD11b+Ly6G- population. Therefore, our study suggests that Atg7 is essential for maintaining proper nucleosome assembly and limiting aging in the bone marrow CD11b+Ly6G- population.


Assuntos
Antígenos Ly/metabolismo , Proteína 7 Relacionada à Autofagia/genética , Antígeno CD11b/metabolismo , Células Mieloides/metabolismo , Nucleossomos/metabolismo , Animais , Proteína 7 Relacionada à Autofagia/metabolismo , Células da Medula Óssea/metabolismo , Camundongos , Camundongos Knockout
7.
Aging Cell ; 19(10): e13232, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32951306

RESUMO

Autophagy suppresses mitochondrial metabolism to preserve hematopoietic stem cells (HSCs) in mice. However, the mechanism by which autophagy regulates hematopoietic aging, in particular in humans, has largely been unexplored. Here, we demonstrate that reduction of autophagy in both hematopoietic cells and their stem cells is associated with aged hematopoiesis in human population. Mechanistically, autophagy delays hematopoietic aging by activating the downstream expression of Sirt3, a key mitochondrial protein capable of rejuvenating blood. Sirt3 is the most abundant Sirtuin family member in HSC-enriched population, though it declines as the capacity for autophagy deteriorates with aging. Activation of autophagy upregulates Sirt3 in wild-type mice, whereas in autophagy-defective mice, Sirt3 expression is crippled in the entire hematopoietic hierarchy, but forced expression of Sirt3 in HSC-enriched cells reduces oxidative stress and prevents accelerated hematopoietic aging from autophagy defect. Importantly, the upregulation of Sirt3 by manipulation of autophagy is validated in human HSC-enriched cells. Thus, our results identify an autophagy-Sirt3 axis in regulating hematopoietic aging and suggest a possible interventional solution to human blood rejuvenation via activation of the axis.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Sirtuína 3/sangue , Envelhecimento/sangue , Animais , Autofagia/fisiologia , Células-Tronco Hematopoéticas/citologia , Humanos , Camundongos
8.
Aging Cell ; 19(5): e13114, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32212304

RESUMO

Hematopoietic disorders are known to increase the risk of complications such as osteoporosis. However, a direct link between hematopoietic cellular disorders and osteoporosis has been elusive. Here, we demonstrate that the deterioration of hematopoietic autophagy is coupled with osteoporosis in humans. With a conditional mouse model in which autophagy in the hematopoietic system is disrupted by deletion of the Atg7 gene, we show that incapacitating hematopoietic autophagy causes bone loss and perturbs osteocyte homeostasis. Induction of osteoporosis, either by ovariectomy, which blocks estrogen secretion, or by injection of ferric ammonium citrate to induce iron overload, causes dysfunction in the hematopoietic stem and progenitor cells (HSPCs) similar to that found in autophagy-defective mice. Transcriptomic analysis of HSPCs suggests promotion of iron activity and inhibition of osteocyte differentiation and calcium metabolism by hematopoietic autophagy defect, while proteomic profiling of bone tissue proteins indicates disturbance of the extracellular matrix pathway that includes collagen family members. Finally, screening for expression of selected genes and an immunohistological assay identifies severe impairments in H vessels in the bone tissue, which results in disconnection of osteocytes from hematopoietic cells in the autophagy-defective mice. We therefore propose that hematopoietic autophagy is required for the integrity of H vessels that bridge blood and bone cells and that its deterioration leads to osteoporosis.


Assuntos
Autofagia , Células-Tronco Hematopoéticas/metabolismo , Osteoporose/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Pessoa de Meia-Idade , Proteômica
9.
Aging (Albany NY) ; 11(14): 4910-4922, 2019 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-31327762

RESUMO

Autophagy has been well studied in regulating aging; however, the impact of autophagy in one organ on the aging of other organs has not been documented. In this study, we used a mouse model with deletion of an autophagy-essential gene Atg7 in hematopoietic system to evaluate the intrinsic role of hematopoietic autophagy on the aging of non-hematopoietic organs. We found that autophagy defect in hematopoietic system causes growth retardation and shortened lifespan, along with aging-like phenotypes including hypertrophic heart, lung and spleen, but atrophic thymus and reduced bone mineral density at organismal level. Hematopoietic autophagy defect also causes increased oxidative stress and mitochondrial mass or aging gene expression at cellular level in multiple non-hematopoietic organs. The organ aging in the Atg7-deleted mice was reversed by anatomic connection to wild-type mice with intact blood autophagy via parabiosis, but not by injection of blood cell-free plasma. Our finding thus highlights an essential role of hematopoietic autophagy for decelerating aging in non-hematopoietic organs.


Assuntos
Envelhecimento/patologia , Proteína 7 Relacionada à Autofagia/deficiência , Autofagia/genética , Deleção de Genes , Animais , Modelos Animais de Doenças , Sistema Hematopoético/patologia , Camundongos , Camundongos Knockout , Mitocôndrias , Estresse Oxidativo , Parabiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...